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Theoretical Modeling of Cortisol Sensor 
 

Milorad Gordic 

ABSTRACT 
  

This thesis describes the theoretical modeling of a response of an electrochemical 

BioMEMS sensor for detecting small amounts of cortisol hormone.  The electrochemical 

sensor utilizes a catalyst enzyme (3α-HSD) to convert cortisone to cortisol and the Square 

Wave Voltammetry (SWV) as a preferred method to measure the forward and reverse 

current of the system.  The parameters and equations necessary to estimate the Square 

Wave Voltammetry (SWV) theoretical response are determined and outlined.  The 

response is modeled and the results are compared to the experimental data.  Further, the 

design of the sensor is analyzed and suggestions are made on how to improve the 

repeatability of the sensor’s response.   

The diffusion coefficients for cortisone and cortisol hormone are calculated to be 

2.87*10-10 and 2.84*10-10 m2/s respectively with± 10% tolerance.  The dimensionless 

peak current (ψ) for the system is ~10% lower than the one theoretically postulated by 

Bard et al. [3].  The surface area of the working electrode of the sensor varies with and is 

directly proportional to the concentration of the analyte.  Theoretical current peaks are 

hypothesized to be within 10% tolerance limits (mainly due to the reason that the surface 

area of the working electrode is itself a variable).   
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CHAPTER 1 

HISTORY OF CORTISOL RESEARCH 

 

 Just like many other hormones, corticosteroids (a family of steroid hormones 

produced by the adrenal gland) were discovered through their absence from a system.  In 

1849 British scientist Thomas Addison observed a fatal form of anemia, as he described 

it at the time, which was reflected by diseased supra-renal capsules (glands located above 

the kidneys).  In a later description of the condition, which came to be known as 

Addison’s disease, he emphasized the weakness of the body and the heart, anemia, 

irritability of the stomach, and discoloration of the skin.  However, it was not until 70 

years later that the distinction between the adrenal hormones was first seen through the 

administration of the extracted substance from the adrenal gland that extended life.  The 

functions of these substances were further divided into those that involve carbohydrate 

metabolism (glucocorticoids), and those related to electrolyte and water balance 

(mineralocorticoids).  However, it was found that with the administration of these 

substances, certain side effects occurred which reflected themselves by causing patients 

to gain weight, develop “moon face” and “buffalo hump” (from the excess fat-tissue 

stored in these areas), osteoporosis of the spine, insulin resistant diabetes, etc.  More than 

80 years after Addison’s disease was named (primarily characterized by insufficient 

secretion of adrenal gland), Cushing’s disease was described (primarily characterized by 
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an over-active adrenal gland and excess amounts of glucocorticoids).  These conditions 

further motivated research into glucocorticoids.  Then in 1949, Hench, Kendall, Slocumb, 

and Polley published a paper that turned out to be a major scientific breakthrough of its 

time.  In it, they discussed the anti-inflammatory effects of the adrenal glucocorticoid 

hormone.  The discovery benefited millions of people; however, dangerous side effects 

were still present since the effect of the new drugs did not include those of 

mineralocorticoids [10].  The above-mentioned scientists are considered to be the 

discoverers of the cortisol hormone, as we know it today.  Ever since its discovery in 

1949, cortisol has been thoroughly researched by scientists worldwide.  Extensive 

research has been done to understand multiple roles cortisol has on a system [12, 19, 24, 

32], but one can still say that its detection (using sensors) is in its infancy.  This work is 

aimed at developing a cortisol sensor for medical and defensive purposes, and the 

following sections focus on its significance in both fields.   

  

1.1 Introduction to Cortisol (Hydrocortisone) 

 Cortisol is a member of glucocorticoids – a family of steroid hormones produced 

by the adrenal gland.  It has multiple roles and functions in the human system, including  

maintaining normal blood glucose levels, blood pressure regulation, and regulating the 

homeostatic balance of cardiovascular system, immune system, kidneys, skeletal muscle, 

nervous system, and endocrine system [10, 18].    

 It is not possible to make a quick estimate of how much cortisol is in an 

individual’s bloodstream at a particular instance, partly due to the numerous factors 

affecting its levels.  Levels of cortisol vary throughout the day, being highest in the 
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morning, and lowest right before bed-time, and after we fall asleep.  Some controllable 

factors that can affect levels of cortisol are eating patterns and levels of activity 

throughout a day.  Although, there are many changes in the system that can cause 

disruption of levels of cortisol hormone in the blood, none has been more effective than 

physical and/or emotional stress.  As a matter of fact, stress is so effective in disrupting 

levels of cortisol that the hormone received a pet name – “stress-hormone”.   

Side effects of abnormal levels of cortisol range from case to case, and in some 

instances can even be beneficial.  Most of the time, however, abnormal levels of cortisol 

are associated with negative side effects, often resulting in a serious condition after 

prolonged, untreated exposure.  Addison’s and Cushing’s disease are, unfortunately, only 

two examples that can result in such an instance.  Cortisol is thought to be a possible 

precursor to some other conditions such as epilepsy [9].  Developing a fast and reliable 

method of cortisol detection would be very beneficial; later in this chapter we will discuss 

the motivation behind the work described in this thesis.  

 

1.2 Synthesis of Cortisol Hormone 

Synthesis of most steroid hormones starts with cholesterol.  Contrary to popular 

belief, cholesterol is essential for the homeostatic balance in the system.  The organism 

produces most of it, but a good portion comes from food intake through daily 

consumption.   

Since the adrenal gland has no visible innervation, it can be inferred that the 

Adrenocorticotropic hormone (ACTH) is a sole stimulant to production of cortisol.  The 

adrenal gland does not store the cortisol hormone, but it does store significant amount of 



 

its precursors.  Once the ACTH stimulates the gland, cholesterol concentration drops 

within a very short time and the level of cortisol increases [18].  Although there is no 

documented research to support this, one could surmise that the relationship between 

adrenal cholesterol and cortisol is somewhat inversely proportional.   

 

Figure 1.1:  Synthesis of Cortisol 

 In order to fully understand the synthesis of cortisol, it is necessary to first 

understand that the entire process will undergo a few reactions involving enzymes critical 

for the creation of each hormone at a particular stage.  First, the cholesterol will undergo 

a catalyzed oxidation of carbons 20 and 22.  This reaction will result in pregnenolone and 

aldehyde, which then oxidizes into an isocaproic acid.  In this reaction a small amount of 

17α-OH-pregnenolone may also be formed; however, this portion will be converted to 

17α-OH-progesterone by the 17α-hydroxylase enzyme.  Although tiny portions of 

pregnenolone escape from the adrenal gland, most stays and undergoes further 

processing.  The remaining pregnenolone is then converted to progesterone by 3β-

hydroxysteroid dehydrogenase and involves two microsomal enzymes.  Progesterone is 
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converted to 17α-OH-progesterone by the 17α-hydroxylase enzyme.  Finally, this 

hormone goes through two more hydroxylation phases before it is finally converted to 

cortisol (see figure 1.1 and 1.2) [19]. 

 

Figure 1.2:  Structure of Cortisol (C21H30O5). 
Adapted from Citizendium.  Online encyclopedia.  10/2008 

 
Each enzyme from figure 1.1 is crucial for that particular step.  Having an enzyme 

deficiency will not result in creation of cortisol, and exposure to such conditions over a 

prolonged period of time will result in a serious homeostatic imbalance. 

 

Figure 1.3:  Cortisone  Cortisol Conversion 

Further, inter-conversion between active cortisol to inactive cortisone and vice versa may 

be possible by introduction of another enzyme called 11β-hydroxysteroid dehydrogenase 

type 1 (11β-HSD-1) and 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD-2) (see 

figure 1.3) [19].   
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1.3 Secretion of Cortisol Hormone  

 

 

Figure 1.4:  Secretion of Cortisol  

The pathway to release of cortisol is relatively simple to explain.  During a 

stressful event, for example, the hypothalamus starts releasing Corticotropin-releasing 

hormone (CRH).  The Corticotropin-releasing hormone (CRH) triggers the release of 

Adrenocorticotropic hormone (ACTH) by the pituitary gland.  Finally, it is the release of 

the Adrenocorticotropic hormone (ACTH) that stimulates the release of glucocorticoids 

(mainly cortisol) by the adrenal gland.  Rising levels of cortisol will then provide 

feedback to the hypothalamus and pituitary gland and signal to stop the release of the 

Corticotropin-releasing hormone (CRH) and Adrenocorticotropic hormone (ACTH) (See 

figure 1.4) [18].  Transcortin, a protein serum, is responsible for transporting cortisol 

throughout the system [32].  As such, most cortisol hormones are bound to some kind of 

compound in the bloodstream.  Only 4-10 % of the cortisol is thought to be free-moving 

in the system [12]. 

6 



 

7 

 As mentioned earlier, levels of cortisol hormone will constantly vary throughout 

the day, being highest in the morning and lowest at night, right before the bed-time.  In 

normal adults, providing they are not under stress, normal secretion of cortisol hormone 

in a whole day is 10-20mg.  Morning levels vary anywhere between 140-180ng/ml, while 

afternoon and night levels significantly drop to anywhere between 20-40ng/ml [10].  The 

rate of increase/decrease of cortisol at any particular instance (i.e. epileptic seizure attack) 

is not known.  This area of medicine is still open for further study and research.   

  

1.4 Need for Cortisol Sensing 

 Detection of cortisol potentially has a wide variety of uses in the medical field, 

but these could also be applied to any other industry.  A potential new market for a highly 

reliable cortisol sensor might be customs screening or airport screening for passengers 

carrying illicit materials (assuming that such passengers’ stress levels would be unusually 

abnormal when compared to the norm).  Another possible use for a highly sensitive 

cortisol sensor could be a form of polygraph screening to improve the accuracy of the 

test.  The possibilities are endless.   

 

 1.4.1 Need for Cortisol Sensor in Medical Field 

As mentioned, the cortisol sensor would have numerous applications in the 

medical field.  Cortisol is one of the major metabolic regulators in the body, and as such, 

abnormal levels could indicate some other, more serious condition.  Reliably detecting 

precise levels of cortisol might also give better idea about the level of cortisone in the 

system and its ratio to cortisol (two hormones that can be inter-converted using 11β-
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hydroxysteroid dehydrogenase type 1 and 2 enzymes, as already shown).  For example, 

children with hypoadrenalism have a lower range of cortisol as opposed to cortisone, 

while children with adrenal cancer have been found to have increased levels of cortisol as 

opposed to cortisone [21].   

Another important recent discovery ties cortisol with an epileptic seizure attack 

[9].  Having a cortisol sensor would help further research into exactly what enables 

canines to predict an epileptic seizure.  Since cortisol is a steroid and stress hormone, the 

possibility whether it is this hormone that dogs sense could further be researched.  In 

other words, can canines smell an epileptic seizure as well as fear?   

Also, the dangerous side effects of artificial cortisol used as a drug to treat certain 

conditions, such as, rheumatoid arthritis, cannot be forgotten.  Overdosing a patient will 

most definitely result in Cushing’s syndrome and later in Cushing’s disease.  Having a 

sensor to monitor the natural levels of cortisol, and then feeding back the automatic drug-

delivery system could potentially minimize the negative side effects that such patients 

can experience.   

Finally, another possible market for a reliable sensor is in the field of sports 

medicine.  Well over the last forty years, athletes have been illegally using 

glucocorticoids to enhance their performance.  Drug screening for illegal use of artificial 

steroids is yet another possible use of this kind of sensor [23].  

 

 1.4.2 Need for Cortisol Sensor in Other Fields 

There are many possible industrial applications for a cortisol sensor, but none 

have the appeal like the possible screening tool for people importing illicit materials into 
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a country.  While a terrorist threat is at an all time high and lives of innocent people are in 

danger all around the globe, having a sensor to monitor the stress level of passengers 

going through customs or airport security would be a great advantage.  The heart rate, 

blood pressure, and other conditions connected to sympathetic nervous system, become 

abnormal in most people with any kind of confrontation [16].  Having a good cortisol 

monitor could segregate highly stressed travelers as opposed to ones experiencing low or 

no stress at all when confronted by customs agents.   

Another application where a cortisol sensor might potentially find a use is the 

polygraph machine.  Along with monitoring for respiratory rate, sweatiness of fingertips, 

blood pressure, and heart rate, the machine could monitor cortisol secretion and improve 

in accuracy.  Also, biological research facilities that study the effect of man-made objects 

on flora and fauna mainly test the cortisol levels in the blood of a subject.  For example, 

one particular study focused on the effect a fluctuating hydro-power plant had on one-

year old trout [8].  The researchers in this study mainly focused on the level of blood 

cortisol and the nature of its secretion.  

 

1.5 Collection of Sample 

 To monitor cortisol levels requires collecting two specimens of blood (collected 

between 6 and 8am and 6 to 11pm) or continuous collection of urine over a 24-hour 

period.  For blood, two 5ml samples are collected and mixed with anticoagulant to keep 

the sample in liquid state.  Upon receiving a sufficient amount of sample, the sample is 

then transferred in a refrigerated environment to the laboratory where it is analyzed using 

a preferred method. 
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1.6 Motivation 

The basic motivation of this thesis is to investigate the possibility of an 

electrochemical sensor and its sensitivity to increasing levels of cortisol.  While the most 

common methods for cortisol level diagnosis are still blood and urine tests, other 

potential methods for cortisol analysis are saliva and sweat tests.  

Since cortisol levels in the human body differ throughout the day, blood and urine 

tests require repeatable sample collections throughout the day.  Collecting all samples for 

analysis (especially blood) can result in a traumatic experience for the patient and it takes 

considerable time to implement – another down-side to the whole process.  Having a 

highly selective sensor integrated within an instrument that could monitor either saliva 

and/or sweat throughout the day could not only reduce the trauma of the sample 

collection but also may aid in giving an insight into an epileptic seizure attack and serve 

as an aid to customs agents for separating passengers who may have malicious.   

Clearly, there is a need for a cortisol sensor.  There are also many ways to 

produce it, but finding an effective one is where the puzzle starts.  In this thesis, the 

possibility of using the electrochemical sensing of the cortisol-biotin-streptavidin bond to 

Au nanowires will be examined. 
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CHAPTER 2 

CURRENT METHODS OF CORTISOL ANALYSIS 

 

 The following chapter discusses a few methods utilized to test the levels of 

cortisol in a sample:  Radioimmunoassay (RIA), Competitive Protein Binding Assay 

(CPB), Fluorometric method, Reverse-phase High Performance Liquid Chromatography, 

and Electrochemical BioMEMS Cortisol Sensor.  The first three are stand-alone 

applications; they are used to find higher concentrations, and are not very sensitive to 

minute variations of the hormone in the test sample.  Reverse-phase High Performance 

Liquid Chromatography is described mainly because it aids in the accuracy of the utilized 

sensor.  Finally, electrochemical sensor (described in section 2.5) is a novel way 

proposed to monitor cortisol hormone levels.  Design, fabrication, and method of 

measurement of this sensor are briefly described.  Experimental results from the 

measurements are outlined and will be used in theoretical analysis in the chapters that 

follow.   

 

2.1 Radioimmunoassay (RIA) 

Developed in 1959, the RIA method can be somewhat dangerous and caution is 

practiced because it utilizes a radioactive antigen.  This procedure utilizes the fact that 

proteins and antibodies are adsorbed by some plastics (see figure 2.1).   



 

 

Figure 2.1:  Radioimmunoassay 

Serum containing the fixed amount of antibodies is added to plastic tubes, and left 

to incubate for a few minutes for adsorption to take place.  Next, the serum is removed 

and the tube is rinsed with a saline solution, leaving a coat of antibodies on the surface.  

Solutions containing a fixed number of radioactive cortisol molecules (procedure not 

described) and test sample are then simultaneously added to the tube, and left to incubate.  

After incubation, the solutions are removed, and tubes are rinsed.  The radioactivity of 

the tube is then measured depending on the ratio of radio-labeled cortisol and regular 

cortisol, and the level of normal cortisol in the sample is determined. The radioactivity of 
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the tube depends on the concentration of cortisol in the test sample since the two attach to 

a limited number of antibodies in a specific ratio [4, 11]. 

Even though RIA offers more specificity, it still can lead to erroneous results.  A 

major problem with the RIA cortisol test is that various steroids contained in the sample 

(along with cortisol) can still react with cortisol antibodies contained in the assay.  This 

can cause false elevations of the cortisol level in the measurement.  The measurement is 

dependent on the antibody used.   

To improve the results of the test, it is possible to purify the sample prior to 

performing an RIA analysis.  The process is called chromatography, and it involves 

extracting specific elements out of the sample for further processing.   However, the 

purification procedure is not always the same and RIA kits are not always the same, 

either.  These variables, combined with research showing that reference levels of cortisol 

vary between individuals and genders, could make RIA an undesirable method for 

diagnosing cortisol levels in the system [4, 11]. 

 

2.2 Competitive Protein Binding (CPB)   

In theory, the CPB and RIA methods are very similar.  The major difference 

between these two methods is the amount of sample needed to perform an analysis, with 

CPB requiring considerably a smaller amount to perform the analysis.  Like RIA, CPB 

also uses radioactive atoms in order to carry out the measurement and caution is 

emphasized.  The CPB method consists of immobilizing a fixed number of antibodies 

over a surface to which the cortisol will bind (see figure 2.2).   



 

 

Figure 2.2:  Competitive Protein Binding 

A fixed amount of cortisol-hormone (labeled with a radioactive atom) is added to 

bond with antibodies (at this point the radioactivity will reach the peak because all of the 

radioactive cortisol is present in the sample).  The test sample is then added to the assay 

(already containing bonded radioactive cortisol and antibody).  Cortisol from the sample 

will then proportionally bind to antibodies depending on the ratio to radioactive cortisol.  

For example, if there are twelve molecules of antibodies and the same number of 

radioactive cortisol, and we add six molecules of normal cortisol, only four molecules of 

normal cortisol and eight molecules of radioactive cortisol will bond to the antibodies.  

Two molecules of normal cortisol and four molecules of radioactive cortisol do not bond 

and can be separated from the sample by centrifugation or some other method.  The 

radioactivity measurement will then reveal the amount of normal cortisol present since 

there is an interdependent relation between the two, just like with RIA.  Since the cortisol 
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molecules (normal and radioactive) compete for the binding sites with antibodies, the 

assay is called Competitive Protein Binding Assay [4, 11]. 

In practice, the measurements are not so simple and they depend on many other 

factors.  For instance, the specificity of the antibody used may not be very good and other 

molecules may bind to them.  Cortisol-binding protein called transcortin is used as an 

immobilizing, binding agent.  But other hormones such as cortisone, 11-deoxycortisol, 

and progesterone also have affinity towards transcortin.  For this reason, it is 

recommended to perform chromatography of the test sample before assaying.  Further, 

too small amount of radioactivity may produce erroneous results, thus invalidating the 

measurement [4, 11]. 

 

2.3 Fluorometric Method 

 

Figure 2.3:  Fluorometric Measurement 
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Fluorescence is a phenomenon that describes the property of certain 

materials/matter to adsorb light energy and then reemit this light energy in longer 

wavelengths (less energy).  Exciting light usually has to be within a certain range in order 

to maximize the effect of fluorescence of a certain matter.  Likewise, to maximize this 

effect, fluorometers generally have two filters that separate different light frequencies, 

only allowing light with a specified wavelength to reach the test sample.  The first filter 

only allows shorter wavelength exciting light to pass through to excite the sample.  The 

second filter serves to filter out scattered exciting light, and only allows filtered light to 

pass through to the photocell (see figure 2.3).   

In order to make use of this assay for cortisol measurements, the hormone must 

first be extracted and marked with fluorescent reagents.  The test sample is first mixed 

with ethylene dichloride, and shaken rigorously for 20 minutes, in order to enable the 

attachment of fluorescent reagent to the cortisol hormone.  At this point, the sample is 

centrifuged to separate it from ethylene dichloride.  An aliquot of this extract is then 

placed in a test tube.  Fluorescent reagent (absolute ethyl alcohol mixed with 

concentrated sulfuric acid) is then added to the aliquot extract every 1 minute and 

vigorously shaken for 20 seconds for binding to take place.  After a fixed amount of time, 

the sample is tested under the fluorometer utilizing a system of two filters described 

above.  For ethyl alcohol mixed with concentrated sulfuric acid marker, the first filter 

should have a cut-off at 450nm, while the second filter should not pass light lower than 

520nm in wavelength.   

Although not very specific, the fluorometric assay method can still be used for 

some clinical tests to determine the level of cortisol.  However, like with the previous two 
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methods, there are factors that can skew the results and thus invalidate the test.  It has 

been noted that large consumption of alcohol and tobacco products can greatly skew the 

tests.  Further, fluorometric instruments can greatly differ between each other.  To avoid 

errors with data comparison due to this reason, it is necessary to establish a reference 

level (baseline) of the known good sample before measuring the fluorometric response of 

blood sample or urine sample [4, 11]. 

 

2.4 High Performance Liquid Chromatography (HPLC) 

The HPLC method was established in late 1960s.  This apparatus utilizes six basic 

components for its operation.  These are the liquid mobile phase (also known as carrier 

liquid), sample injector, mechanical pump (which maintains pressure of the system), 

column, detector, and data recorder. Depending on the properties of the material being 

investigated, detection can be performed using refractive index, conductivity, 

electrochemistry, absorbance or fluorescence.   

There are five separation techniques that pertain to liquid chromatography:  

adsorption, partition, ion-exchange, affinity, and size exclusion chromatography.  Of 

these five, partition is the most popular one and most often used for cortisol analysis.  

Further, partition is divided into Normal-phase Liquid Chromatography and Reverse-

phase Liquid Chromatography (with the latter being used for cortisol separation) [11, 17].   

 

 2.4.1 Reverse-phase HPLC (RP HPLC) 

Reverse-phase liquid chromatography uses a non-polar stationary phase.  This 

means that as the liquid mobile phase passes through the column carrying the test sample, 



 

undesired elements from the sample are filtered out by the stationary phase.  For cortisol, 

the stationary phase (or the filter) is made up of C18 chains that filter small molecules and 

peptides out of the sample.  Finally, when the sample has been properly filtered, it is 

further passed through a detector of choice, and data graphs are plotted (see figure 2.4).   

 

Figure 2.4:  High Performance Liquid Chromatograph 

Of the four methods for cortisol testing, HPLC seems to offer the best specificity.  

It seems to be the best option for precise measurements with as little interference from 

other hormones as possible.  Unlike the other three methods, it offers an option of a fully 

automated process which eliminates the human variable from analysis, resulting in a 

more precise measurement [11, 17]. 

 

2.5 Electrochemical BioMEMS Cortisol Sensor 

The electrochemical cortisol sensor is designed and fabricated at the University of 

South Florida [15] (see figure 2.5).   Microelectrodes are first fabricated on the Si wafer.   
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Figure 2.5:  Electrochemical BioMEMS Sensor.  Reprinted from Biosensors and 
Bioelectronics, 22, Kumar et al., Ultrasensitive detection of cortisol with enzyme 

fragment complementation technology using functionalized nanowires, 2138-2144, 
Copyright (2007), with permission from Elsevier 

 
The working electrode and counter electrode are fabricated by evaporating Ti and Pt onto 

the wafer.  Afterwards, the Si wafer is exposed to a few more lithography steps to 

fabricate a 60μm tall microfluidic chamber using an SU-8.  Further, Au nanowires are 

fabricated using a Whatman anodisc template by electroplating in Techni Gold 25 ES 

solution for one hour.  The Au nanowires are aligned between the Pt electrodes on the 

surface of Si wafer using dielectrophoresis.  Cortisol antibodies are then attached to Au 

nanowires utilizing the biotin-streptavidin link added by activation with thioctic acid.  
19 
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Finally, the electrochemical measurements are performed by mixing 5μl of 0.1M catalyst 

enzyme 3α-HSD with 25μl of dissolved cortisone at different concentrations.  The system 

is left to react for 5 seconds, and electrochemical measurements are performed (see figure 

2.6).   

 

Figure 2.6:  Cortisol Detection Scheme.  Reprinted from Biosensors and Bioelectronics, 
22, Kumar et al., Ultrasensitive detection of cortisol with enzyme fragment 

complementation technology using functionalized nanowires, 2138-2144, Copyright 
(2007), with permission from Elsevier 

  

Several scans are performed before the range of the sensor is determined.  The 

increase in current peaks is found to be proportional with the increase in cortisone 

concentrations.  The graph is broken down into two separate entities for clarity (see 

figure 2.7a and 2.7b).  The peak value of current (observed to be at 40mV potential) is 

afterwards used to calibrate a curve where current is reflected as a function of the 

concentration of cortisol (see figure 2.8, obtained directly from the authors).  



 

 

Figure 2.7a:  SWV at Different Concentrations of Cortisol (10-50μΜ).  Reprinted from Biosensors and Bioelectronics, 22, 
Kumar et al., Ultrasensitive detection of cortisol with enzyme fragment complementation technology using functionalized 

nanowires, 2138-2144, Copyright (2007), with permission from Elsevier 
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Figure 2.7b:  SWV at Different Concentrations of Cortisol (60-80μΜ).  Reprinted from Biosensors and Bioelectronics, 22, 
Kumar et al., Ultrasensitive detection of cortisol with enzyme fragment complementation technology using functionalized 

nanowires, 2138-2144, Copyright (2007), with permission from Elsevier 
 

22 



 

23 

8.01E-06

1.68E-05

2.87E-05

4.41E-05

6.45E-05

9.35E-05

1.27E-04

1.55E-04

y = 2E-08x2 + 1E-07x + 5E-06
R2 = 0.9986

0.00E+00

2.00E-05

4.00E-05

6.00E-05

8.00E-05

1.00E-04

1.20E-04

1.40E-04

1.60E-04

1.80E-04

0 10 20 30 40 50 60 70 80 90

concentration (µM)

cu
rr

en
t (

A
)

 

Figure 2.8:  Calibration Curve for Cortisol.   
Obtained from Arun Kumar, Shyam Aravamudhan, and Shekhar Bhansali.  University of South Florida.  2008
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CHAPTER 3 

THEORY 

 

 Chapter 3 introduces the concepts necessary to understand theoretical analysis of 

the sensor.  The first one, dielectrophoresis, is a method used to control the assembly of 

nanowires as a working electrode of the sensor.  The parameters that can be varied to 

maximize the dielectrophoretic force for ultimate assembly will be discussed.  The 

assembly itself does not seem important at first; however, later it will be shown that a 

surface area of the working electrode may be an important factor when estimating the 

total current.  The second part of this chapter (introduction to electrochemical 

measurements) primarily discusses Square Wave Voltammetry (SWV).  This helps 

theoretically confirm and explain the experimental results obtained in the lab.   

 

3.1 Dielectrophoresis 

Dielectrophoresis is a scientific method used to align particles in a certain manner 

using a uniform and/or non-uniform electric field.  The subject matter does not need to be 

charged for the electric field to alter its position.  The factors that affect the final result of 

the alignment of the matter are strength of the electric field, frequency, shape of matter, 

size of matter, electrical properties of matter, and the medium in which dielectrophoresis 



 

is taking place.  The following simplified equation is commonly used to estimate the 

dielectrophoretic force:   

))()(( tEtmFDEP ∇⋅=      3.1 

where E is the electric field, m is the dipole moment, and ∇  is the del vector (actual 

equation includes higher order terms as well as Maxwell stress tensor) [5, 25]. 

 As the non-uniform electric field passes from one electrode to the other, it will 

create a torque on the particle, thus causing it to move.  Cylindrically shaped object 

should therefore align in the same direction of the electric field.  The dipole moment 

induced on the particle can be expressed using the following equation: 

)()( tEKVtm pmε=      3.2 

where εm is the absolute permittivity of the medium, Vp is the volume of the particle (for 

cylindrical object ), E is the electric field, and K is the complex polarization 

factor.  Since the nanowires used for this project are cylindrical in shape, polarizability 

along the length is more pronounced than either radial orientation.  Therefore, complex 

polarization factor is expressed: 

lrVp
2π=

[ ]
∗

∗∗ −
=

m

mpK
ε

εε
     3.3 

where εp
* and εm

*  are complex permittivity of particle and medium respectively.   The 

word complex indicates the presence of both real and imaginary factors, with the latter 

containing both conductivity σ and angular frequency ω.  Therefore, the new equation for 

the complex permittivity ε* is: 

ω
σεε i−=∗       3.4 

25 



 

Due to the fact that the E-field and nanowire polarization are in-phase, the 

dielectrophoretic force can be expressed by looking at the real part of equation 3.1, and 

can therefore be re-written: 

}Re{
2
1 ∗∇⋅= EmFDEP      3.5 

Combining equations 3.2 and 3.5 yields a new expression for dielectrophoretic force, and 

is written: 

22 ||}Re{
2
1

rmsmDEP EKlrF ∇= επ     3.6 

Root mean square value of the electric field Erms as well as complex polarization factor K 

can further be broken down as following: 
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Finally, equation 3.6 can be combined with equations 3.7 and 3.8 to yield the final 

equation of the dielectrophoretic force: 

 
( ) ( )

⎟
⎠
⎞

⎜
⎝
⎛∇

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+

−+−
⎟
⎠
⎞

⎜
⎝
⎛=

dx
dV

dx
dV

lrF rms
x

rms

mm

mpmmpm
mDEP 222

222
2

2
1

σωε

σσσεεεω
επ         3.9 

Upon the alignment of each nanowire between electrodes, the magnitude of the 

electric field between electrodes is reduced.  Depending on the application, this can 

create a serious issue because a majority of nanowires can end up being scattered, 

randomly melting and welding to the electrode.  If nanowires are going to be used as a 
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working electrode for electrochemical measurements (like in this project), it becomes 

more complicated to estimate the true surface area of the working electrode.  The exact 

value of the surface area in this case is necessary for final data analysis and estimation.   

At frequencies below 1kHz nanowires may have a tendency to evaporate, further 

complicating the above problem.  Evaporation does not seem to be the problem at higher 

frequencies.  At 10kHz or higher, the strength of the dielectrophoretic force seems to be 

weaker [25]. 

On the other hand, the same strength of the dielectrophoretic force is 

exponentially proportional to the peak voltage applied across the electrodes.  In short, to 

manipulate/maximize the strength of the force, voltage and frequency are the two 

variables most commonly altered to tweak the force as desired.  The user may not have 

much choice with the permittivity due to the fact that different liquids/buffers may force 

an unpredicted reaction in a sensor itself, thus skewing results.   

Further, it is thought that dielectrophoresis is applicable to structures between 1 

and 1000μm.  Gravity is suspected to be a major interference for structures larger than 

1000μm.  For small structures under 1μm in size, Brownian motion (random movement 

of particles suspended in liquid) overwhelms the DEP force [5, 25]. 

 

3.2 Electrochemistry 

By definition, electrochemistry is the study of the interchange of chemical(s) and 

electric current.  There are different types of electrochemical measurements, but for this 

project Square Wave Voltammetry (SWV) was used, and therefore will be discussed.  

This method utilizes a system of three electrodes to provide an excitation voltage, and 
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measure the current from the electrochemical cell:  working electrode (WE), reference 

electrode (RE), and counter electrode (CE) [2, 3, 13, 20, 30, 35]. 

 

3.2.1 Electrode Function Breakdown 

Working electrode (WE) is where all the electrochemical changes occur.  In other 

words, it is a point where the apparatus provides electrical excitation and performs 

measurements with respect to the reference electrode and the counter electrode.   

Reference electrode (RE) is the electrode of a fixed, constant potential with 

respect to the electrolyte and is kept at equilibrium.  The potential of the RE serves as a 

reference when measuring the potential of the WE.  Because of the need to keep the RE 

at equilibrium, it is not recommended to pass charge through it.  Most reference 

electrodes contain the chemical element Cl, and current flow will cause the concentration 

to fluctuate.  Finally, the counter electrode (CE) is included to facilitate the passage of 

current at the WE [2, 3, 13, 20, 30, 35]. 

 

3.2.2 Fundamentals of Electrochemistry  

To reflect on some fundamentals and terminology in electrochemistry, it is 

imperative to start with the term of equilibrium.  In electrochemistry, equilibrium means 

zero current during potentiometric measurement.  In other words, it is common to say that 

a system in equilibrium has an absent power source driving the reaction (effectively 

equivalent to an open circuit - electronic wise).  However, even though the current does 

not exist between the electrodes, the electrodes still have some potential.  This potential is 

equilibrium electrode potential and very important when determining the overpotential of 



 

an electrode, which is the difference between new electrode potential and its equilibrium 

equivalent while forcing charge.   

η = Eelectrode – Eequilibrium    3.10 

When forcing the charge on the electrode, the equilibrium of the system will be 

disturbed, thus resulting in varying the electrode potential.  At this point, the flow of 

charge is accompanied with electron uptake (reduction) or electron loss (oxidation) of the 

electroactive analyte in the electrolyte by the working electrode, thus changing the 

concentration and activities of the analyte in the electrolyte.  Activity and concentration 

are closely related.  Activity is defined as concentration perceived by electrode, and is 

expressed by: 

a = c * γ     3.11 

(where a is activity, c is concentration, and γ is activity coefficient).  However, at low 

concentrations, this γ is considered equal to unity, and the new form of equation is: 

a = c      3.12 

Altering this ratio of activities at the electrode/solution interface and conversion of the 

material from reduced to oxidized form and back will in turn result in 

production/consumption of charge.  This phenomenon is somewhat described by a form 

of the Nernst equation: 

)(@
Re

)(@
0 ln surfaceelectrode

d

surfaceelectrode
Ox

electrodeworking a
a

nF
RTEE +=            3.13 

(E0 is standard electrode potential, R is universal gas constant (8.314510 J K-1 mol-1 ),  T 

is temperature (in Kelvin), n is number of electrons involved in reaction, F is Faraday 

constant (9.6485309×104 C mol-1 ), and aOx and aRed are chemical activities for the 
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oxidized and reduced species respectively).  The true Nernst Equation is only valid when 

the system is in equilibrium, and is: 

       )(@
Re

)(@
0 ln surfaceelectrode

d

surfaceelectrode
Ox

mequilibriu a
a

nF
RTEE +=    3.13a 

Under this condition net current density is equal to either forward or reverse current of 

the reaction: 

Inet = Iforward = Ireverse     3.14 

Forward current (also known as oxidative or anodic current) is obtained when a species 

of interest loses electrons.  Likewise, reverse current (also known as reductive or cathodic 

current) is obtained when a species of interest gains electrons. It can be mathematically 

shown that the Nernst equation is therefore a derivative of the above equation (and vice 

versa).  However, equation 3.13 is a “form” of the Nernst equation because the system is 

not in equilibrium.  When the system is not in equilibrium, forward and reverse currents 

are not the same, and net current is the addition of the two.   

I net = I forward – I reverse     3.15 

In practice, the currents flow opposite to one another, so to account for that, a negative 

sign is used in the formula.  Following formulas are adopted for forward and reverse 

currents: 
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(α is a transfer coefficient, and in most cases has a value of 0.5).  The term I0 is also 

known as exchange current.  It is calculated by multiplying the exchange current density 

i0 [A/m2] with total surface area of a working electrode A[m2].  This is the rate constant 

of electron transfer while the system as a whole is in equilibrium.   

Combining the equations 3.15, 3.16, and 3.17, the final equation for estimating 

the net current is obtained: 
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  3.18 

The above equation is the Butler-Volmer equation and it may be used to estimate the total 

current at any particular instance.  Finally, to conclude this part of the chapter, it is 

important to emphasize that the above theory is not always useful when predicting 

forward and reverse currents.  The graphical representation of the above currents has a 

form as in figure 3.1 below, and currents do not peak [2, 3, 13, 20, 30, 35]. 

 The method of measurement used for this experiment, Square Wave 

Voltammetry, significantly differs from figure 3.1 in output.  Square Wave Voltammetry 

is characterized by forward and reverse current graphs that reach a peak at one point, and 

converge to a fixed value on either end.  This method is briefly described in the following 

section.   
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Figure 3.1:  Forward and Reverse Current in El-Chem System 

 

3.2.3 Square Wave Voltammetry (SWV) 

Electrochemical voltammetry is a method where voltage is varied over a time 

period, while at the same instance, current is measured in a reaction.  The square wave 

excitation signal applied to the working electrode (WE) is shown in figure 3.2.  Voltage 

pulses are applied at a user directed rate ν (Vs-1) and period τ (ms).  ΔEp is usually 50mV, 

ΔEs is commonly about 5mV, and tp is usually anywhere between 20-40ms.   
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Figure 3.2:  Time-Potential Profile for SWV.  Electrochemical Methods – 
Fundamentals and Applications.  Allen J. Bard & Larry R. Faulkner.  David Harris, 

Elizabeth Swain & Eugene Aiello.  Copyright (2001) John Wiley & Sons, Inc.  Reprinted 
with permission of John Wiley & Sons, Inc. 

 
 While the voltage on the working electrode (WE) is applied, the current 

measurements are performed by the apparatus first in the forward, then in the reverse 

direction.  The net current is the addition (or difference) between these two currents, and 

the net current is the one reflected on the monitor of the instrument.  An example of one 

such reading is illustrated in figure 3.3.   
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Figure 3.3:  Square Wave Voltammogram.  Reprinted with permission from (Anal. 
Chem., Vol: 49, No.: 13, 1904-1908).  Copyright (1977) American Chemical Society. 

 
 A few equations are utilized to describe the SWV waveform.  First, depending on 

the selected parameters, potential waveform is applied to the working electrode, and is 

described as: 
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(where m denotes a series of half cycles from the first forward pulse (m = 1), and 

Int[(m=1)/2] denotes truncation of the ratio to the highest integer).  The balance of the 

concentrations of oxidative and reductive species at the surface of the working electrode 

(also known as Nernstian balance) is then described as: 
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(where n is the number of electrons involved).  The above equation provides an input for 

calculating another parameter required for estimation of total current.   
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(where DO is the diffusion coefficient of the O-species, and DR is the diffusion coefficient 

of the R-species).   

 In Square Wave Voltammetry (SWV), current is expressed as a dimensionless 

unit ψ.  Since in every cycle, there is one forward current sample and one reverse current 

sample obtained, the total forward and reverse current will be the addition of all the 

previous (preceding) half cycles, and the present one.  Therefore, the dimensionless 

current equation is expressed as: 
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50
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where odd values of m correspond to forward current, while even values correspond to 

reverse current samples.  Finally, the dimensionless current difference (analogous to net 

current from equation 3.18) is written as: 

1+−=Δ mmm ψψψ             3.24 

where m covers only odd values, and odd m is taken first.  The dimensionless current 

Voltammogram is illustrated in figure 3.4 below (not to be confused with figure 3.3 that 
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represents the response of a particular sensor measured in amperes.  E1/2 is very close to 

E0’, and is expressed by equation ⎟
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Figure 3.4:  Dimensionless Current.  Reprinted with permission from (Anal. Chem., Vol: 
53, No.: 4, 695-701).  Copyright (1981) American Chemical Society. 

 
Determining the peak reflects the peak dimensionless current pψΔ  from figure 3.4, 

which enables estimation of the peak of the current according to equation 3.25: 
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(where CO
* is the bulk concentration of O-species).  An important fact to note is that 

difference peak current Δψp happens near the half wave potential E1/2, which has to be 

taken into account when graphing the final current waveform versus potential.   

Current equals 0 when the forced potential is much larger than E1/2.   Since the 

forced potential is far away from the electrolysis point, the forward and reverse current 

do not flow.  When the forced potential starts approaching E1/2, electrolysis starts to occur 

and forward and reverse currents start to flow.  Finally, when the forced potential 

becomes much smaller than E1/2, electrolysis happens at the diffusion controlled rate 

independent of the applied potential and both forward and reverse current become similar 

[1-3, 13, 20, 22, 26-28, 30, 33-35].   

The peak of dimensionless current is also dependent on square wave parameters.  

From table 3.1 it is evident that peak is dependent and increases with ΔEp and ΔEs.  The 

value of Δψp can then be used to estimate other unknown parameters from equation 3.25.  

Table 3.1:  Dimensionless Peak Current vs. SWV Operating Parameters.  
Electrochemical Methods – Fundamentals and Applications.  Allen J. Bard & Larry R. 

Faulkner.  David Harris, Elizabeth Swain & Eugene Aiello.  Copyright (2001) John 
Wiley & Sons, Inc.  Reprinted with permission of John Wiley & Sons, Inc. 

 
nΔES /mV 

nΔEp /mV 
1 5 10 20 

10 0.2376 0.2549 0.2726 0.2998 

20 0.4531 0.4686 0.4845 0.5077 

50 0.9098 0.9186 0.9281 0.9432 

100 1.1619 1.1643 1.1675 1.1745 

 



 

Table 3.1 is helpful in estimating a single peak point of the current, but equation 3.23 has 

to be incorporated in order to see how the current really behaves over a larger range of 

voltage.  So, the current for the mth half-cycle is: 
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Again, an important thing to note about this equation is that odd values of m correspond 

to forward current, and even correspond to reverse current.  Net current is the difference 

between the forward and reverse samples shown in: 

1+−=Δ mmm iii          3.27 

(where m covers only odd values, and odd m is taken first).  Further, the diffusion 

coefficient is described in terms of the radius of the moving particles and molecules in 

the solvent by equation: 

rN
TRD
νπ6

=            3.28 

(where v is the viscosity of the solvent, N is Avogadro’s number, and r represents the 

radius of a molecule/particle) [1].  The radius is then described by Stokes radius (which is 

the equivalent of the radius of a hard sphere that diffuses at the same rate as an actual 

molecule) in equation 3.29: 

3
4
3
π
Vr =             3.29 

(where V is a cell volume of a particle/molecule). 

Square Wave Voltammetry (SWV) features a number of advantages when 

compared to other methods.  From figure 3.3 it can be seen that since the peak value is 
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the addition of two currents and therefore larger, the value of the current is more easily 

estimated (hence, increasing the accuracy).  Further, Square Wave Voltammetry (SWV) 

minimizes the capacitive contributions to the overall current, resulting in dramatic 

increase of scan rate (capacitive current is always present as long as there is AC 

excitation on the electrode.  Keeping the excitation signal constant greatly reduces the 

capacitive effect.  For this reason, current measurements are performed right before the 

potential changes in order to minimize the capacitive effect).   Finally, the height of the 

peak of the net current is directly proportional to the concentration of analyte, making the 

interpretation of the results easier [1-3, 13, 20, 22, 26-28, 30, 33-35].   

 

3.2.4 Construction of Electrochemical Cell 

The next step is the construction of the cell where the measurements will take 

place.  This is a simple yet complicated process, due to so many rules to follow, and the 

greatest challenge is trying to satisfy all of the requirements.  Only a few important rules 

are mentioned and implemented for the sake of this experiment, and will later be 

discussed.   

The very first rule states that the tip of the RE should be positioned as close as 

possible to the surface area of the WE.  This minimizes the ohmic drop and polarization 

of the WE should be uniform.  Second, the CE should be positioned downstream from the  

WE, and it is recommended that the CE be excluded from the solution bulk or 

significantly away from it, but still in contact with main body of the cell.  The reason for 

this is because the CE reaction with the electrolyte may produce negative effects on the 



 

measurement.  Finally, one last rule of utmost importance is to thermally isolate the cell 

because the reactions are temperature dependent [2, 3, 13, 20, 30, 35]. 

Failure to satisfy these few rules can greatly skew the results.  But again, these are 

just a few requirements to keep in mind.  The design could get expensive and labor-

intensive if all requirements were to be satisfied, especially if the cell had to be 

dimensionally small.   One possible scheme for constructing the electrochemical cell is 

illustrated in figure 3.5 below.   

 

Figure 3.5:  Graphical Representation of El-Chem Cell   
 

Upon completing the cell, the electrodes are connected to the apparatus and 

electrochemical measurements of choice are performed.  Figure 3.6 below depicts a block 

diagram of such an apparatus [2, 3, 13, 20, 30, 35]. 
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Figure 3.6:  Block Diagram of Apparatus for El-Chem Analysis.   
Adapted from class notes.   A. Sagues.  Electrochemical Diagnostic Techniques.  2006 
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CHAPTER 4 

RESULTS 

 

This chapter attempts to give an explanation to the experimental results shown in 

section 2.6.  It is necessary to refer back to chapter 3 equations (3.19 – 3.29) in order to 

calculate the peak current for a given concentration of cortisone/cortisol using the SWV 

measurement method.  First, looking at equation 3.26, a few unknown quantities are left 

to be determined.  
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The oxidative and reductive species diffusion coefficient, dimensionless current 

(summation term), and the surface area of the working electrode are for now unknown.   

The following section explains the approach taken to estimate the diffusion coefficient of 

the oxidative and reductive species – cortisone and cortisol.   

 

4.1 Calculation of Diffusion Coefficients 

Diffusion coefficients were estimated using equation 3.28.  Since the reaction 

takes place in phosphate buffer saline (PBS), which has properties similar to water, 

viscosity of water 0.001 ⎥⎦
⎤

⎢⎣
⎡

2m
Ns  is therefore used for this equation.   
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rN
TRD
νπ6

=       3.28 

The value of the radius for equation 3.28 is obtained from equation 3.29.  The unit cell 

volume for equation 3.29 is obtained from the Cambridge Structural Database [6, 29] for 

both cortisone and cortisol.  

3
4
3
π
Vr =             3.29 

The software patch for cortisone molecule is downloaded from the Cambridge Structural 

Database.  This software patch is uploaded into Mercury software (also obtained from the 

Cambridge Structural Database), which enables viewing of all the structural and physical 

information of the cortisone molecule (see figures 4.1a, 4.1b, and 4.1c below).  An 

important thing to stress is that cell volume is expressed as a volume of a rectangular 

prism that a single molecule occupies.   

Since molecules are not spherical in shape, the radius of the molecule is then the 

radius of a perfect sphere that diffuses at the same rate as the actual molecule, also known 

as Stokes radius.   Therefore, the volume of a rectangular prism is equated to the volume 

of a perfect sphere.  The rectangular prism volume (see figure 4.1c) is incorporated into 

equation 3.29, upon which the final value for the Stokes radius of the cortisone molecule 

is obtained.   

][10*60.7
*4

22.1838*3 103 mr −==
π
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Figure 4.1a:  Views of Cortisone Molecule.  Mercury Software from Cambridge 
Structural Database.  [http://www.ccdc.cam.ac.uk/support/product_references/] 
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Figure 4.1b:  Rectangular Prism Unit Cell.  Mercury Software from Cambridge 
Structural Database.  [http://www.ccdc.cam.ac.uk/support/product_references/] 

 

 
 

Figure 4.1c:  Structural Info of One Molecule of Cortisone.  Mercury Software 
from Cambridge Structural Database.  

[http://www.ccdc.cam.ac.uk/support/product_references/] 
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The radius of a single cortisone molecule is estimated to be approximately 7.6Ǻ.  

Incorporating this value into equation 3.28, the diffusion coefficient for cortisone 

(oxidative species) is calculated to be: 
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 The dimensions of a unit cell for cortisol (a = 6.435Ǻ, b = 15.626Ǻ, c = 18.912Ǻ) 

yield a cell volume of 1901.67Ǻ3 [6].  Using the equivalent calculation procedure 

described above yields the radius of a single cortisol molecule (reductive species) to be 

approximately 7.69Ǻ.  The diffusion coefficient of cortisol is calculated to be 2.84*10-10 

m2/s. 

 Of course, the calculations above represent rough estimates of what the true value 

of both diffusion coefficients are.  The molecules are too small to precisely calculate their 

volume.  Further, the value of the diffusion coefficient greatly depends on the 

environment in which the measurements are performed.  The viscosity of PBS, for 

example, is not available from a manufacturers’ specification sheet.  The viscosity of 

water is used instead, even though the two mediums may slightly differ in this aspect.  

Combination of all of these factors may introduce error into further calculation of total 

current.   For this reason, it is hypothesized that a deviation of ± 10% will account for the 

rough estimate of the above-calculated values.  So, for cortisone, the diffusion coefficient 

range is 2.58*10-10 - 3.16*10-10 m2/s.  For cortisol, the same range is 2.56*10-10 - 3.12*10-

10 m2/s.   
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Finally, estimating the diffusion coefficients eliminates two variables from the list 

of unknowns.  The following section explains the calculation of dimensionless current 

(summation term of equation 3.26). 

 

4.2  Calculation of Peak Dimensionless Current 

 The dimensionless current is calculated using the system of equations 3.19 

through 3.24 from chapter 3.  First, Square Wave Voltammetry (SWV) excitation voltage 

is calculated using equation 3.19 over so many half cycles.    
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All the parameters from this equation are known (Ei = 0.08V, ΔEs = 0.004V, ΔEp = 

0.02V, f = 8Hz) [15], so modeling the waveform presents a simple task (see figure 4.2).  

Next, the value of Em (from equation 3.19) is used in conjunction with E1/2 (which 

is calculated to be approximately 0.039V, since E0’ was found to be 0.04V [14]) to 

determine the balance between concentrations of oxidative and reductive species at the 

working electrode by equation 3.20.   
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This balance changes every half cycle and is used further down in the estimation 

of dimensionless peak current.  Equations 3.20 and 3.22 are then combined into equation 

3.21 to find the next term in a sequence, Q.    
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Finally, equation 3.23 yields the dimensionless current at any particular instance, 

while equation 3.24 represents the total net current (or the difference between the forward 

and reverse dimensionless currents) – analogous to equation 3.15.  The peak 

dimensionless current is obtained from equation 3.24, and is the highest point in the curve 

- Δψp (see figure 4.3).  It is determined to equal 0.4247.   
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 Using the frequency of 8Hz for the square wave excitation [15], it is calculated 

that the period of the square wave is 0.125s (an inverse of frequency).  It then follows 

that the half cycle of the square wave lasts 0.0625s.  Using the logic that current is probed 

every 0.0625s (first in forward then in reverse direction), it is hypothesized that the whole 

measurement can be performed in the amount of time it takes the square wave excitation 

to reach a certain level lower than that of E1/2.  In other words, forward and reverse 

currents become similar and electrolysis starts to occur at the diffusion controlled rate.  In 

this case, it is hypothesized that the whole measurement could be performed in 5 seconds 

(see figure 4.4).  It is assumed that estimating the diffusion coefficient to 10% does not 

affect the results since the error is canceled by the equation 3.22.  In other words, the 

term ξ  will not change if the diffusion coefficient is 10% larger (or smaller), since the 

ratio remains the same.   
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Figure 4.2:  Simulation of SW Excitation on Working Electrode 
49 



 

Dimensionless Current, PSI

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

-0.45-0.4-0.35-0.3-0.25-0.2-0.15-0.1-0.0500.050.1

n(E-E1/2) [V]

PS
I PSI Forward

PSI Reverse
PSI Total

 

Figure 4.3: Simulation of Dimensionless Current  
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PSI vs. t
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Figure 4.4:  Simulation of Dimensionless Current Over Time



 

4.3 Calculation of Surface Area of Working Electrode 

After estimating the dimensionless current, the surface area of the working 

electrode remains the last unknown in equation 3.26.  However, in order to estimate the 

surface area of the electrode, it is first necessary to estimate the peak currents obtained in 

the lab experimentally (from figures 2.7a and 2.7b).  These peak currents are necessary 

because the area is estimated from equation 4.1, which is a modified form of equation 

3.25.   
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Dimensionless peak current value determined in the previous section (Δψp = 

0.4247) is used in the above equation.  The value extrapolated from table 3.1 (Δψp = 

0.4647) can also be used; however, square wave voltammogram could not be obtained 

since this value strictly represents a single value at the peak.  In other words, it would not 

yield a continuous line which illustrates the potential at which peaks occur.  But to verify 

the information, both methods will be performed and compared for consistency.   

Finally, looking at the figures 2.7a and 2.7b, eight different current peaks are 

estimated for each concentration of hormone added to the cell.  An important thing to 

note is that the concentrations must be converted to appropriate units.  A good check 

would be to write out the unit equation using equation 4.1, and to determine whether the 

final result is m2, such as performed in section 4.1.   
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Table 4.1:  Calculation of Surface Area Using Dimensionless Peak 
Current From Figure 4.3  

 

Concentration  
[mol/m3] 

Peak Current  
[A] 

(fig. 2.7a and 
2.7b) 

Diffusion 
Coefficient 

[m2/s] 

Net PSI 
(fig. 4.3) 

Surface 
Area 
[m2] 

0.01 8.01E-06 2.87E-10 0.4247 5.11E-04 
0.02 1.68E-05 2.87E-10 0.4247 5.36E-04 
0.03 2.87E-05 2.87E-10 0.4247 6.10E-04 
0.04 4.41E-05 2.87E-10 0.4247 7.04E-04 
0.05 6.45E-05 2.87E-10 0.4247 8.23E-04 
0.06 9.35E-05 2.87E-10 0.4247 9.94E-04 
0.07 1.27E-05 2.87E-10 0.4247 1.16E-04 
0.08 1.55E-05 2.87E-10 0.4247 1.24E-04 

 

After estimating the areas by using the peak value from the dimensionless graph, 

a second method of estimating the area is performed.  The dimensionless peak current 

value (Δψp = 0.4647) from table 3.1 is used based on the square wave excitation 

parameters specified.  This is a faster, simpler method since it does not involve software 

analysis.   

Table 4.2:  Calculation of Surface Area Using Dimensionless Peak 
Current From Table 3.1  

 

Concentration  
[mol/m3] 

Peak Current  
[A] 

(fig. 2.7a and 
2.7b) 

Diffusion 
Coefficient 

[m2/s] 

Net PSI 
(Table 

3.1) 

Surface 
Area 
[m2] 

0.01 8.01E-06 2.87E-10 0.4647 4.67E-04 
0.02 1.68E-05 2.87E-10 0.4647 4.90E-04 
0.03 2.87E-05 2.87E-10 0.4647 5.58E-04 
0.04 4.41E-05 2.87E-10 0.4647 6.43E-04 
0.05 6.45E-05 2.87E-10 0.4647 7.52E-04 
0.06 9.35E-05 2.87E-10 0.4647 9.09E-04 
0.07 1.27E-05 2.87E-10 0.4647 1.05E-04 
0.08 1.55E-05 2.87E-10 0.4647 1.13E-04 

  



 

It is evident from the above calculations that the surface areas using different 

values of the dimensionless peak current vary roughly up to 10%.  During the final 

current estimate, it is important to keep the above calculations separate.  They may be 

describing the same entities, but the methods utilized to calculate that entity are different.   

Also, looking at the above values for the surface area of the nanowires, it might 

seem surprising that such small particles could create such a large surface area of the 

working electrode.  In order to understand this better, it is imperative to refer back and 

analyze the original method utilized to fabricate the Au nanowires [15].  Understanding 

the amount of surface area that the entire set of nanowires from the Whatman disc can 

form determines whether the above surface area calculations make sense.    

The nanowires were fabricated by electroplating in Techni Gold 25 ES solution 

for 1 hour [15].  Graphical representation of the Whatman disc clarifies physical 

dimensions of the Au nanowires (see figure 4.5).   

 

 

Figure 4.5:  Graphical Representation of Whatman Disc 

Electroplating for 1 hour creates a nanowire that is roughly 20μm in length.  

However, after releasing the nanowires in KOH and then methanol, it is hypothesized 
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that they break in half since they are thought to be extremely brittle.  Also, for the sake of 

calculation, it is assumed that the nanowires are perfectly cylindrical.  Taking this into 

account (perfect cylinder; 10μm in length; 200nm base diameter) the surface area of a 

single nanowire is calculated to be 6.35*10-12 m2.   

The Whatman disc comes in two sizes, 13mm and 26mm in diameter.  Also, the 

pore density ranges between 1013-1014 holes per meter squared [31, 36].  Depending on 

which size of the disc is selected, the total number of holes per disc is 2.65*109 (for the 

13mm diameter disc) and 1.06*1010 (for 26mm diameter disc).  Multiplying these 

numbers by the surface area of a single nanowire yields a total surface area of 1.68*10-2 

m2 (168cm2) for a 13mm diameter disc and 6.74*10-2 m2 (674cm2) for a 26mm diameter 

disc.   

Finally, the surface areas from all the nanowires in the disc are compared with the 

surface areas of the working electrode thought to be present in the cell.  It is obvious that 

the total surface area of the nanowires thought to be in the cell makes only a small 

fraction of the total surface area produced by all the nanowires that are in either size 

Whatman disc.  Therefore the nanowires do indeed have the potential for creating a total 

surface area comparable to that determined independently from the electrochemical 

calculations shown earlier in tables 4.1 and 4.2.   

 

4.4 Calculation of Total Peak Current for an Electrochemical Response  

 After all the unknown parameters have been estimated, the total peak current of 

the electrochemical system can finally be calculated and graphed using equations 3.25 

and 3.26  
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Equation 3.25 utilizes the second part of area calculations (table 4.2) illustrated in 

the previous section.  This equation yields single point current peaks at a particular 

concentration.  These values are compared against figure 2.8 from experimental analysis.   

Equation 3.26 illustrates the entire square wave voltammogram and highlights the 

half potential of the cell (since that is the point where peak occurs).  The first part of the 

equation ( 5050

*50

p

OO

t
CnFAD

π
) represents a constant that is combined with the graph of the 

dimensionless net current (∑
=
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−m
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QQ

1
50

1

)1(
) from figure 4.3.  The areas from table 4.1 

(section 4.3) are incorporated into this equation.  The values are also compared against 

the ones obtained in figure 2.8 from experimental analysis.   

Further, like in previous sections, it is recommended to write out the equation 

with units to make sure errors do not carry over (the final result is in Ampere).  In order 

to do this, all the parameters and their respective values and units are listed below.   

 

1. n – Number of electrons involved in reaction = 1 (when cortisone is converted to 

cortisol it releases 1 electron) 

2. F – Faraday constant ≅  96,500 C mol-1  

56 
3.   A – surface area of working electrode – see section 4.3 (steps 1-8) 



 

57 

4.   DO – Diffusion coefficient for O-species ≅  2.87*10-10 m2/s  

5.   CO
*

 - Bulk concentration of O-species = 10-80μΜ (figures 2.7a and 2.7b) or 0.01-

0.08 mol/m3 

6.   tp – half-cycle of the square wave = 0.0625 seconds 

7. Δψp – estimated from figure 4.3 ≅  0.4247 
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After performing a unit check, theoretical current peaks are finally graphed and 

calculated using Microsoft Excel.  The maximum value of each peak is then determined 

and graphed against each concentration.  The theoretical current peaks are compared 

against experimental current peaks from chapter 2 (see figures 4.6 and 4.7).  Error bars 

are set to 10% to account for hypothesized percent error when estimating the diffusion 

coefficient.   

Equation 3.25 is used in order to see whether the results would match if the value 

of dimensionless peak current from table 3.1 were used.  So the only two parameters that 

changed from the list above are the surface area calculations (step 3) and dimensionless 

peak current (step 7).  In this instance, surface area equation 4.1 would utilize 

calculations from table 4.2 (section 4.3), while dimensionless peak current would equal 

0.4647.  Likewise, error bars are set to 10%.  The results are discussed in chapter 5.  
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Figure 4.6:  Theoretically Calculated SW Voltammogram for Different Concentrations of Cortisone/Cortisol  
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Figure 4.7:  Theoretically Calculated Current Based on Different Concentrations of Cortisone/Cortisol Using Dimensionless 
Peak Current From Figure 4.3 
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Figure 4.8:  Theoretically Calculated Current Based on Different Concentrations of Cortisone/Cortisol Using Dimensionless 
Peak Current From Table 3.1 
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CHAPTER 5 

DISCUSSION AND FUTURE WORK 

 

In this research, a theoretical model has been developed for a sensor to detect the 

cortisol hormone.  An in-depth look into Square Wave Voltammetry resulted in the 

information needed to optimize the design of the sensor itself.  The following conclusions 

are primarily based on numerical analysis of the data.  At the end of this chapter, 

suggestions to optimize the design of the sensor are given. 

 

5.1 Discussion   

The greatest challenge of this analysis was to estimate the surface area of the 

working electrode to aid in the approximation of the current during the electrochemical 

measurement.  The theoretically estimated values from figures 4.7 and 4.8 are mirror 

images of the experimental values shown in figure 2.8 (unsurprisingly, because figures 

4.7 and 4.8 are after all reverse-engineered by using the values from figure 2.8).  

However, one fundamental question arises from the entire analysis that deals with the 

accuracy and reliability of the surface area of the working electrode (estimated in section 

4.3) that is used to estimate curves in figures 4.7 and 4.8.  Are the values calculated in 

table 4.1 (section 4.3) more precise than values calculated in table 4.2 (section 4.3), even 

though they fall within 10% tolerance of one another?  To better answer this question, it 
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is necessary to refer to the original process utilized to align the nanowires as the working 

electrode of the sensor.   

Alignment of Au nanowires was completed utilizing the dielectrophoresis 

technique discussed in chapter 3.  First, the resistance was checked between electrodes to 

ensure complete isolation between the positive and negative microelectrode using a 

simple Digital multi-meter.  200μl of nanowire-methanol solution was then dispersed 

over the microelectrodes using a syringe.  Agilent 33250 waveform generator was 

connected to microelectrodes and programmed to output 10 VRMS at 1kHz.  This signal 

was applied over the period of 15 seconds.  After this initial period, the excess nanowire 

solution was removed, and the working area was washed with pure methanol.  Potential 

and frequency were then varied gradually over time up to 50VRMS and 10kHz for an 

additional 30 seconds.  The assembly was observed by monitoring the voltage drop over 

the series 1kΩ resistor and was later verified with a scanning electron microscope (SEM). 

The set-up was left at room temperature overnight to dry off.  Finally, resistance was 

checked again between microelectrodes to ensure the presence of nanowires which 

indicated alignment.  Resistance should decrease during the second check, suggesting a 

short path between the electrodes.   

The problem with the above method is that the amount of nanowires dispersed 

with 200μl of methanol cannot be controlled.  If the process is required to be repeated 

multiple times, the sole number of nanowires becomes unpredictable and starts to vary, 

making the surface area parameter from equation 3.26 a variable.   Further manipulation 

of the working area of the sensor (like washing the area with piranha solution, which is 

done to activate the Au nanowires and attach cortisol antibodies) may remove the loose 
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nanowires off the sensor completely.  This is a factor that only adds variability to the 

design.   

But even if the above-stated problems were not an issue, the dielectrophoretic 

alignment of the nanowires presents another challenge.  The force of the electric field 

during the alignment will not align the nanowires to perfectly bridge the gap between 

electrodes.  The final outcome is more similar to a random, uncontrolled alignment as 

shown in figure 5.1.  Some nanowires may get welded to the microelectrodes under the 

influence of electric field; others may just stay in contact with the microelectrodes 

without forming a firm joint, while some nanowires may not be in contact with the 

microelectrodes at all.  The latter presents a problem because the excitation voltage never 

reaches this portion of the working electrode, thus skewing the result.   

The above factors result in the surface area parameter being a variable, which 

makes it (and the sensor) extremely difficult to study.  In order to overcome this problem, 

it is necessary to design a sensor with a fixed electrode surface area.  For example, 

evaporating a fixed amount of Au onto a Si chip and creating an electrochemical cell 

around it. 

On the other hand, utilizing the nanowires brings some advantages.  The surface 

area provided by a small fraction of the nanowires is comparable to the surface area of 

evaporating a larger amount of Au onto a wafer.   For a large scale operation, evaporating 

the Au onto a Si wafer uses more Au; thus raising the cost.  Creating a larger surface area 

on multiple wafers by using nanowires from a single Whatman disc can lower the cost 

substantially.  Also, because of their size, nanowires can potentially achieve higher 

sensitivity, even though the area footprint is significantly reduced. 



 

 

Figure 5.1:  Random Alignment of Nanowires.  Reprinted from Nanotechnology, 16, Boote et al., Dielectrophoretic 
manipulation and electrical characterization of gold nanowires, 1500-1505, Copyright (2005), with permissions from IOP 

Publishing Ltd. and S.D. Evans.   
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The reference electrode used for this sensor is fabricated externally and is 

suspended above the cell [14], making it another potential candidate for a variable since 

the electrode is inserted arbitrarily into the cell.  This may introduce variations if the 

process is required to be repeated multiple times, since the location of the electrode is 

different every time.  

Another problem with the external reference electrode is that there is a risk of 

shorting the surface of the metal between the reference electrode (which is freely 

suspended over the sensor in electrolyte) and the working and counter electrodes.  It was 

observed in a separate unrelated experiment that shorting the reference electrode to the 

working and counter electrodes raises the temperature of PBS to a boiling point; thus 

making the test sample useless.  Further MEMS analysis is necessary to come up with a 

design where all three electrodes (primarily the reference electrode) would be fixed in a 

cell.  An example of such an electrode is illustrated in figure 5.2. 

 First, 300Ǻ of Ti and Ni are evaporated (or sputtered) on the surface of the Si 

wafer.  This step provides a good adhesion layer for the material that follows.  Then, 

5000Ǻ of Ag is evaporated to create the first layer of the electrode.  The epoxy is applied 

to the wafer to form the groove for bonding and the AgCl paste.  Finally, the AgCl paste 

is added and the reference electrode characterization can be performed.   

 

 

 

 

 



 

 

 

Figure 5.2:  Ag/AgCl Reference Electrode.  Reprinted from Sensors and Actuators B, 97, 
Kim et al., Enhancement of physical and chemical properties of thin film Ag/AgCl 

reference electrode using a Ni buffer layer, 348-354, Copyright (2004), with permission 
from Elsevier 
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Finally, having an open, unsealed cell where electrochemical measurements are 

performed leaves room for environmental interference with the set-up.  Primarily, there is 

a human factor.  Depending on the time of day the tests are performed (cortisol secretion 

is most active in the morning, least active at night) it may be possible to skew the results 

if the person performing the experiment disturbs the cell by being in close contact with it.  

More people in a surrounding area only increase the chance for an error.  For this reason, 

there is a definite need for a sealed electrochemical cell as well as protective gear worn 

by the operator(s) performing the experiment.   

 

5.2 Future Work 

 Based on the above observations, a recommendation is made for an improved 

design of an electrochemical sensor.  First, for the time being, the nanowires are 

completely eliminated from the sensor since they introduce a problem when estimating 

the surface area of the electrode.  Instead, Au is evaporated directly on the Si wafer to 

form the layer of the working electrode of a fixed surface area.  Afterwards, the reference 

electrode is fabricated via the procedure described in the previous section; and the 

counter electrode is fabricated by evaporating a layer of Pt onto the surface of Si wafer.   

Finally, after activation and characterization of Au, the assay procedure can be performed 

(see figure 5.3).  The measurement is recommended to be performed later in the day by 

an operator wearing all necessary protection to minimize interaction with the cell.  The 

mathematical model developed in this thesis can be used to model the response of the 

sensor.  After developing a repeatable model of the sensor, research to find a better 

alignment method of the nanowires is recommended to repeat the above experiment.   



 

 

Figure 5.3:  Graphical Representation of Design Improvement for BioMEMS El-Chem Sensor 
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